3,371 research outputs found

    The star-formation history of the universe - an infrared perspective

    Get PDF
    A simple and versatile parameterized approach to the star formation history allows a quantitative investigation of the constraints from far infrared and submillimetre counts and background intensity measurements. The models include four spectral components: infrared cirrus (emission from interstellar dust), an M82-like starburst, an Arp220-like starburst and an AGN dust torus. The 60 μ\mum luminosity function is determined for each chosen rate of evolution using the PSCz redshift data for 15000 galaxies. The proportions of each spectral type as a function of 60 μ\mum luminosity are chosen for consistency with IRAS and SCUBA colour-luminosity relations, and with the fraction of AGN as a function of luminosity found in 12 μ\mum samples. The luminosity function for each component at any wavelength can then be calculated from the assumed spectral energy distributions. With assumptions about the optical seds corresponding to each component and, for the AGN component, the optical and near infrared counts can be accurately modelled. A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and 850 μ\mum can be found with pure luminosity evolution in all 3 cosmological models investigated: Ωo\Omega_o = 1, Ωo\Omega_o = 0.3 (Λ\Lambda = 0), and Ωo\Omega_o = 0.3, Λ\Lambda = 0.7. All 3 models also give an acceptable fit to the integrated background spectrum. Selected predictions of the models, for example redshift distributions for each component at selected wavelengths and fluxes, are shown. The total mass-density of stars generated is consistent with that observed, in all 3 cosmological models.Comment: 20 pages, 25 figures. Accepted for publication in ApJ. Full details of models can be found at http://astro.ic.ac.uk/~mrr/countmodel

    Post-ISCO Ringdown Amplitudes in Extreme Mass Ratio Inspiral

    Full text link
    An extreme mass ratio inspiral consists of two parts: adiabatic inspiral and plunge. The plunge trajectory from the innermost stable circular orbit (ISCO) is special (somewhat independent of initial conditions). We write an expression for its solution in closed-form and for the emitted waveform. In particular we extract an expression for the associated black-hole ringdown amplitudes, and evaluate them numerically.Comment: 21 pages, 5 figures. v4: added section with numerical evaluation of the ringdown amplitude

    IRAS observations of NGC 1052

    Get PDF
    The galaxy NGC 1052 has been observed with the IRAS satellite. The infrared emission at 100 microns is substantially larger than a smooth extrapolation of the radio data. Because of the large diaphragm size of IRAS, it is impossible to decide uniquely if the infrared radiation represents a self-absorbed nonthermal spectrum or thermal reradiation by heated dust

    Optical/Near-Infrared Imaging of Infrared-Excess Palomar-Green QSOs

    Get PDF
    Ground-based high spatial-resolution (FWHM < 0.3-0.8") optical and near-infrared imaging (0.4-2.2um) is presented for a complete sample of optically selected Palomar-Green QSOs with far-infrared excesses at least as great as those of "warm" AGN-like ultraluminous infrared galaxies (L_ir/L_big-blue-bump > 0.46). In all cases, the host galaxies of the QSOs were detected and most have discernable two-dimensional structure. The QSO host galaxies and the QSO nuclei are similar in magnitude at H-band. H-band luminosities of the hosts range from 0.5-7.5 L* with a mean of 2.3 L*, and are consistent with those found in ULIGs. Both the QSO nuclei and the host galaxies have near-infrared excesses, which may be the result of dust associated with the nucleus and of recent dusty star formation in the host. These results suggest that some, but not all, optically-selected QSOs may have evolved from an infrared-active state triggered by the merger of two similarly-sized L* galaxies, in a manner similar to that of the ultraluminous infrared galaxies.Comment: Aastex format, 38 pages, 4 tables, 10 figures. Higher quality figures are available in JPG forma

    Imaging of Ultraluminous Infrared Galaxies in the Near-UV

    Get PDF
    We present the first ground-based U' (3410 angstroms) images of Ultraluminous Infrared Galaxies (ULIGs). Strong U' emission (median total M_U' = -20.8) is seen in all systems and in some cases the extended tidal features (both the smooth stellar distribution and compact star-forming features) contribute up to 60-80% of the total flux. The star-forming regions in both samples are found to have ages based on spectral synthesis models in the range 10-100 Myrs, and most differences in color between them can be attributed to the effects of dust reddening. Additionally, it is found that star-formation in compact knots in the tidal tails is most prominent in those ULIGs which have double nuclei, suggesting that the star-formation rate in the tails peaks prior to the actual coalescence of the galaxy nuclei and diminishes quickly thereafter. Similar to results at other wavelengths, the observed star formation at U' can only account for a small fraction of the known bolometric luminosity of the ULIGs. Azimuthally averaged radial light profiles at U' are characterized by a sersic law with index n=2, which is intermediate between an exponential disk and an r^(-1/4) law and closely resembles the latter at large radii. The implications of this near-ultraviolet imaging for optical/near-infrared observations of high redshift counterparts of ULIGs are discussed.Comment: 30 pages, 4 tables, and 9 figures, 2 of which are JPEGs. To appear in the August, 2000 edition of the Astronomical Journa

    Recent Development and Results with the MERLIN Tracking Code

    Get PDF
    MERLIN is a high performance accelerator simulation code which is used for modelling the collimation system at the LHC. It is written in extensible object-oriented C++ so new physics processes can be easily added. In this article we present recent developments needed for the Hi-Lumi LHC and future high energy colliders including FCC, such as hollow electron lenses and composite materials. We also give an overview of recent simulation work, validation against LHC data from run 1 and 2, and loss maps for Hi-Lumi LHC

    A Deep VLA survey at 20cm of the ISO ELAIS survey regions

    Get PDF
    We have used the Very Large Array(VLA) in C configuration to carry out a sensitive 20cm radio survey of regions of sky that have been surveyed in the Far Infra-Red over the wavelength range 5-200 microns with ISO as part of the European Large Area ISO Survey(ELAIS). As usual in surveys based on a relatively small number of overlapping VLA pointings the flux limit varies over the area surveyed. The survey has a flux limit that varies from a 5σ\sigma limit of 0.135mJy over an area of 0.12deg2^2 to a 5σ\sigma limit of 1.15mJy or better over the whole region covered of 4.22 deg2^2. In this paper we present the radio catalogue of 867 sources. These regions of sky have previously been surveyed to shallow flux limits at 20cm with the VLA as part of the VLA D configuration NVSS(FWHM=45 arcsec) and VLA B configuration FIRST(FWHM=5 arcsec) surveys. We have carried out a a detailed comparison of the reliability of our own survey and these two independent surveys in order to assess the reliability and completeness of each survey.Comment: 19 pages, 24 figures, submitted to MNRAS, also available in http://www.ast.cam.ac.uk/~ciliegi/elais/paper

    A 25 micron component in 3C 390.3

    Get PDF
    Infrared Astronomical Satellite (IRAS) observations show that there is a maximum in the continuum energy distribution of the broad-line radio galaxy 3C 390.3 near 25µm and that this active galaxy emits most of its energy in the infrared. If the 25µm component is thermal, its temperature is approximately 180 K, and its size must exceed tens of parsecs
    corecore